

Technology Watch Report: General Atomics EMS

1. Core Technology Portfolio

General Atomics Electromagnetic Systems (GA-EMS) operates as a specialized group within the broader General Atomics enterprise, focusing on the research, design, and manufacture of first-of-a-kind electromagnetic and electric power generation systems for defense and commercial applications. While its portfolio is diverse, a technical assessment reveals two foundational, interlocking capabilities that form the core of its advanced military hardware offerings: military-grade pulsed power systems and the high-energy-density capacitors that enable them. These technologies are the critical enablers for a range of next-generation weapon systems, including electromagnetic launchers and directed energy weapons.

Military Pulsed Power Systems

The cornerstone of GA-EMS's military portfolio is its demonstrated mastery of high-energy pulsed power systems. These systems are engineered to accumulate vast amounts of electrical energy over a period of seconds and then discharge it in a precisely controlled, high-current pulse lasting only milliseconds. This capability is fundamental to powering electromagnetic weapons that cannot be driven by conventional prime power sources. The company's architectural philosophy and technical achievements in this domain are well-documented. A defining characteristic of GA-EMS's approach is the development of modular, containerized pulsed power architectures. These systems are not designed as static laboratory instruments but as ruggedized, deployable assets intended for integration onto military platforms. This is most clearly demonstrated by the development of the High Energy Pulsed Power Container (HEPPC), a system designed to fit within standard 10-foot and 20-foot shipping containers. This modularity provides significant operational flexibility, allowing the systems to be configured for shipboard, fixed-land, and mobile tactical applications.

The company has also proven its ability to scale these systems across a wide spectrum of energy classes to meet distinct mission requirements. Over the past decade, GA-EMS has designed, built, and tested systems for the U.S. Navy and Army's electromagnetic railgun programs at multiple power levels, including the 3 megajoule (MJ) "Blitzer" test asset, a mobile 10 MJ system, and a 32 MJ system for advanced testing. This demonstrates a mature engineering capability to design the underlying components—capacitors, switches, and control systems—to meet specific energy, volume, and repetition-rate targets. This expertise has its roots in earlier, large-scale programs like the Navy's Electromagnetic Aircraft Launch System (EMALS), which requires immense pulsed power to launch carrier-based aircraft.

High-Energy-Density Capacitors

The critical enabling technology that underpins GA-EMS's dominance in pulsed power is its in-house capability to design and manufacture advanced, high-energy-density capacitors. The performance of the capacitor banks dictates the ultimate performance and, crucially, the size and weight of the entire pulsed power system. GA-EMS is recognized as the leading U.S. developer and manufacturer of these specialized components for defense applications, positioning it as a critical node in the national security industrial base.

The company's product literature details a range of capacitor families tailored for demanding military applications, such as the CMX and CMF series of self-healing, metalized film energy storage capacitors. These components are characterized by exceptional performance metrics, including volumetric energy densities of up to 3.0 joules per cubic centimeter (3.0~J/cc), voltage ratings from under 1 kV to over 100 kV, and extremely long operational lifetimes, with some designs rated for over one billion (1 \times 10^9) charge-discharge cycles. This combination of high energy density and military-grade reliability is essential for systems that must perform repeatedly in harsh environments.

A key aspect of GA-EMS's strategy is the deep, application-specific integration of its capacitor design process with military requirements. A 2009 technical paper co-authored by GA-EMS engineers Fred MacDougall and Joel Ennis explicitly notes that capacitor lifetimes are designed to match the operational needs of the intended weapon system. For example, a capacitor for an electromagnetic gun system may be specified to survive 10,000 shots, a figure that "roughly matches the life expectancy of a Navy gun system". This demonstrates a mature design philosophy where the fundamental component technology is developed from the outset to meet a specific warfighter requirement, rather than being adapted from a commercial product.

The relationship between GA-EMS's capacitor technology and its system-level products is symbiotic and reveals a clear developmental pipeline. Public announcements of system-level breakthroughs, such as increased power density or reduced footprint, are lagging indicators of prior, more fundamental achievements at the component level. For instance, the 2017 announcement of the HEPPC, which doubled the energy density of their pulsed power systems, was not an isolated design achievement. The company's own press release explicitly stated that the system "utilizes GA-EMS' world-record-breaking high energy density capacitors". This followed earlier announcements where the company detailed its success in increasing the energy content of a single large-platform capacitor from a previous record of 340 kJ to over 415 kJ. This progression shows that advances in materials science and manufacturing at the capacitor level directly enable the more visible, system-level capabilities of miniaturization and increased power. Therefore, monitoring GA-EMS's capacitor research and development provides a predictive window into the future performance of their integrated weapon systems.

2. Key Technical Personnel & Recent Activity (2020-Present)

To establish a current technical capabilities fingerprint, it is necessary to move beyond corporate product sheets and identify the key engineers and scientists responsible for driving innovation. Analysis of recent patents and technical announcements reveals a cohort of technical leads actively advancing the state-of-the-art in directed energy and advanced power systems.

Dr. Michael Perry (High Energy Laser Systems)

Dr. Michael Perry is identified as the Vice President for Lasers and Advanced Sensors at GA-EMS. In an October 2021 press release concerning a contract to develop a 300 kW-class laser weapon for the U.S. Army, Dr. Perry provided specific technical details on the system's maturity. He described the laser as "a packaged version of the 7th Generation of our Distributed Gain Design already demonstrated," and noted that "architectural improvements have enabled our single-beam DG Lasers to achieve comparable beam quality to fiber lasers in a very simple design without the need for beam combination". His title and detailed statements confirm his role as the senior technical lead for the company's entire laser weapon portfolio. His commentary indicates a mature, iterative design process (7th generation) and a focus on

achieving high performance (fiber-laser-equivalent beam quality) in a compact and ruggedized package suitable for military applications.

Dr. Geoff Staines and Dr. Brian Paul Cluggish (High Power Microwave Systems)

These two scientists are the co-inventors on U.S. Patent 11,946,726, "Synchronization of high power radiofrequency sources," granted on April 2, 2024. The patent describes a novel method for synchronizing multiple High Power Microwave (HPM) sources with sub-nanosecond timing accuracy. This is achieved by using a laser pulse reflected from a target to trigger the firing of each HPM emitter in an array, ensuring that the individual microwave pulses arrive on target and combine coherently. Dr. Geoff Staines is a long-tenured expert in power electronics at GA-EMS, with technical presentations on power conversion for EMALS and railguns dating back to at least 2007, establishing him as a foundational figure in this domain. Dr. Brian Cluggish brings a cross-disciplinary background that includes work on nuclear systems simulation, suggesting a deep bench of expertise in modeling complex physical phenomena. Their collaboration on this patent points to a highly advanced, next-generation directed energy program focused on overcoming the range and power limitations of single HPM emitters.

Gilberto Fernando Rodriguez, Boris Tyrol, Scott Brian Mahar, Gordon F. Smith II, and Corey John Jaskolski (Advanced Battery Systems)

This team of engineers are the co-inventors on U.S. Patent 12,203,998, "Single cell fault tolerant battery system architecture," granted on January 21, 2025. The patent details a battery module architecture designed to mitigate the effects of a single-cell thermal runaway event. The design incorporates a diffuser plate to channel hot gases and molten material away from adjacent cells, preventing a catastrophic cascading failure of the entire battery pack. This work directly addresses a critical safety and reliability challenge for deploying high-energy lithium-ion batteries on military platforms, where battle damage or cell failure could be mission-ending. Open-source data identifies Gilberto Rodriguez as an Engineering Manager at General Atomics, confirming a leadership role within this design team.

The following table provides a consolidated summary of these key technical leads and their recent, publicly documented contributions. This serves as a quick-reference "who's who" of the key innovators at GA-EMS, linking individuals directly to specific technological breakthroughs.

Name(s)	Assessed Role / Title	Key Activity (Date)	Technical Significance
Dr. Michael Perry	VP, Lasers & Advanced Sensors	Public statement on 300kW laser prototype (Oct 2021)	Confirms leadership over a mature, 7th-generation Distributed Gain Laser technology, pushing toward higher power classes for Army air defense.
Dr. Geoff Staines & Dr. Brian P. Cluggish	Principal Scientists / R&D Engineers (Power Electronics)	Co-inventors, Patent 11,946,726 (Apr 2024)	Developed a method for sub-nanosecond synchronization of multiple HPM sources, enabling a new class of

Name(s)	Assessed Role / Title	Key Activity (Date)	Technical Significance
			coherent, long-range directed energy weapons.
Gilberto F. Rodriguez, et al.	Engineering Manager & Design Team (Battery Systems)	Co-inventors, Patent 12,203,998 (Jan 2025)	Designed a fault-tolerant battery architecture to prevent cascading failures, a critical step for ruggedizing high-energy batteries for military platforms.

3. Analysis of R&D Vectors

Synthesizing the data from GA-EMS's technology portfolio and the recent activities of its key personnel reveals several clear and persistent R&D trajectories. These vectors indicate a strategic focus on making advanced electromagnetic and directed energy systems smaller, more resilient, and more broadly applicable to the modern battlefield.

Vector 1: Aggressive Miniaturization via Increased Power Density

A primary and sustained R&D vector at GA-EMS is the drive to increase the energy density of core components to reduce the overall size, weight, and power (SWaP) of its military systems. This trend is not merely incremental; it is a central pillar of their technology strategy, aimed at enabling the deployment of high-power systems on platforms that were previously too small to support them. The most direct evidence of this is the development of the High Energy Pulsed Power Container (HEPPC). The company explicitly states that the HEPPC "provides twice the energy density than existing railgun pulsed power solutions," allowing them to pack the power of a 20-foot container into a 10-foot form factor. This system-level achievement was directly enabled by component-level breakthroughs, specifically the development of capacitors with an energy content exceeding 415 kJ per unit, a greater than 20% increase over their previous record of 340 kJ. This vector is a critical enabler for expanding the applicability of their systems from large naval platforms to mobile land-based vehicles and, potentially, airborne applications, significantly broadening their addressable market within the Department of Defense.

Vector 2: Maturation and Ruggedization for Operational Environments

GA-EMS is demonstrably moving beyond laboratory prototypes to develop and test components and systems designed to survive and function in harsh military environments. This vector indicates a focus on technology maturation and qualification. A prime example is the March 2022 test series for their gun-launched projectiles. In this series, projectiles containing "integrated gun-hardened guidance electronics" were fired from both an electromagnetic railgun and a conventional 120 mm powder gun. The explicit goal was to prove the survivability and functionality of the electronics and control systems under the extreme G-forces (in excess of 30,000 Gs) and hypersonic velocities of gun launch. Similarly, the 2025 patent for a "single cell fault tolerant battery system" is focused on operational resilience, aiming to prevent a single point of failure from destroying an entire energy storage system during a mission. This trajectory

suggests that several of their core technologies are reaching a high Technology Readiness Level (TRL), likely TRL 6-8, making them viable candidates for integration into formal Programs of Record.

Vector 3: Strategic Pivot from Kinetic to Directed Energy and Hypersonic Enablers

While the company's reputation in pulsed power was built on the high-profile Navy railgun program, its recent public-facing activity shows a significant diversification and potential pivot in its primary application focus. Public communications regarding the development of railgun *launcher* systems were most frequent in the 2016-2018 timeframe. In contrast, recent announcements and patents from 2020-2025 are heavily focused on High Energy Lasers (HEL), exemplified by their partnership with Boeing to develop 100-300 kW class systems, and advanced High Power Microwave (HPM) systems, as evidenced by the 2024 patent on HPM synchronization. Concurrently, the hypervelocity *projectile* technology originally developed for the railgun is now being tested and adapted for use in conventional powder guns, indicating a de-risking or diversification strategy. This pattern suggests a strategic realignment where the immense investment in pulsed power and hypervelocity projectile technology is being leveraged to support a broader portfolio of next-generation weapons. The core competencies are being applied to the demanding power and energy systems required for HELs and as a technology feeder for conventional hypersonic programs.

4. Indicators & Warnings

Analysis of GA-EMS's public R&D activities against the established baseline reveals several anomalies and deviations. These inconsistencies could serve as indicators of undisclosed or classified program activity, where public-facing work provides a partial or misleading picture of the company's full capabilities.

Indicator: Programmatic Decoupling and Strategic Silence on Railgun Launchers

A conspicuous anomaly exists in the public communications regarding the electromagnetic railgun program. While GA-EMS continues to announce progress on the guided, hypersonic *projectiles* originally designed for the railgun, with a major test series announced in March 2022, there has been a notable absence of public announcements regarding progress on the railgun *launcher* systems (the 10 MJ and 32 MJ platforms) since approximately 2018. The 2022 test notably involved firing the projectiles from conventional powder guns, publicly decoupling the projectile from its original electromagnetic launcher.

This public separation of the two core components of the weapon system is highly significant. It suggests one of two possibilities. The first, and more benign, explanation is that the railgun launcher program proved to be a technological dead end, and GA-EMS is salvaging its significant investment in projectile R&D by adapting it for use in existing artillery systems. The second, more compelling hypothesis is that the launcher program reached a sufficient Technology Readiness Level to be transitioned into a formal, classified program of record. Under this scenario, the continued, public-facing testing of the projectiles in powder guns serves as an excellent cover. It allows GA-EMS and its government partners to continue maturing the projectile's guidance, control, and data link systems in an unclassified environment, while the true launcher platform—the more sensitive and revolutionary part of the system—remains "in

the black." This is a common modality for compartmentalized development, designed to protect the most critical aspects of a new capability while still leveraging open-air test ranges for less sensitive subsystem maturation.

Indicator: Advanced Capability Revealed in Niche Patent (HPM Synchronization)

The April 2024 patent for "Synchronization of high power radiofrequency sources" by technical leads Staines and Cluggish describes a capability that appears far more advanced than a simple HPM weapon for point defense. The patent's core innovation is a method for the coherent phasing of multiple, distributed HPM emitters with sub-nanosecond accuracy, allowing their pulses to combine on a target to achieve a greater effect at longer range. This is the technological equivalent of a phased-array radar, but for directed energy weapons. This patent reveals a research vector into a highly advanced, potentially offensive directed energy capability that is not a prominent feature of GA-EMS's public marketing, which tends to focus on its missile defense portfolio. A "phased-array" HPM system represents a significant leap in complexity and military utility, enabling effects to be focused at a distance with greater precision and power. The existence of this patent, filed in mid-2022, indicates a dedicated R&D effort that began years prior. The lack of public discussion around this specific networking capability, coupled with its profound military implications, suggests it may be the subject of a sensitive, customer-funded program that requires a low public profile.

Indicator: Anomalous Cross-Disciplinary Expertise on Core Hardware Patents

A significant anomaly was identified in the inventor list for the January 2025 patent for a fault-tolerant battery system. One of the co-inventors is Corey John Jaskolski. His public profile is not that of a typical battery or power electronics engineer. He is the founder and CEO of Syntheticaic, a leading synthetic data company, a National Geographic Fellow, and an expert in applying artificial intelligence to complex sensor data, with a documented history of work for DARPA and U.S. Special Operations Command (SOCOM).

The presence of an elite AI and synthetic data expert on a patent for a fundamental hardware component like a battery is a strong indicator of a highly sophisticated, multi-disciplinary R&D approach. The patent is not about battery chemistry, but about the physical architecture for containing a failure. This suggests the associated Battery Management System (BMS) is not a simple controller but is likely an AI-driven system that uses predictive models to manage battery health, optimize power delivery under extreme combat conditions, and model failure scenarios. It is plausible that GA-EMS is leveraging Jaskolski's company's synthetic data capabilities to model and simulate thousands of thermal runaway or battle damage scenarios—events that are too expensive or dangerous to test physically. This would allow them to rapidly iterate and validate the design of the physical safety features described in the patent. This level of R&D sophistication, combining advanced hardware design with cutting-edge AI and synthetic data generation, is a hallmark of well-resourced, high-priority programs that often carry a high classification.

Works cited

1. Electromagnetic Systems Group - General Atomics, <https://www.ga.com/about/ems>
2. General Atomics - Wikipedia, https://en.wikipedia.org/wiki/General_Atomics
3. General Atomics Delivers New Pulsed-power Container System to Navy,

[4. General Atomics Delivers New Pulsed Power Container System to Navy](https://www.ga.com/general-atomics-delivers-new-pulsed-power-container-system-to-navy)
Pulsed Power - General Atomics, [5. Railgun - Wikipedia](https://www.ga.com/pulsed-power), [6. General Atomics Announces Next Generation Railgun Pulsed Power Containers](https://en.wikipedia.org/wiki/Railgun), [7. General Atomics introduces improved pulsed power container for US Navy's railgun](https://www.ga.com/general-atomics-announces-next-generation-railgun-pulsed-power-containers), [8. MULTI-MISSION RAILGUN WEAPON SYSTEM MULTI-M WEAPON - General Atomics](https://www.navaltoday.com/2017/03/10/general-atomics-introduces-improved-pulsed-power-container-for-us-navys-railgun/), [9. Railgun Weapon Systems - General Atomics](https://www.ga.com/images/products/defense/missile-defense/Mobile-Railgun-Weapon-System_Army_DS_1018E.pdf), [10. General Atomics Awarded Army Contract to Advance Railgun Weapon System Technology](https://www.ga.com/railgun-weapon-systems), [11. General Atomics Railgun Projectiles Achieve Success in New Series of Critical Open Range Testing](https://www.ga.com/general-atomics-awarded-army-contract-to-advance-railgun-weapon-system-technology), [12. GA-EMS Test Firings Advance Projectile Interceptor Design - General Atomics](https://www.ga.com/general-atomics-railgun-projectiles-achieve-success-in-new-series-of-critical-open-range-testing), [13. General Atomics Continues Testing of Railgun System - DSIAC - dtic.mil](https://www.ga.com/ga-ems-test-firings-advance-projectile-interceptor-design), [14. General Atomics Completes Successful Open Range Testing of Railgun Projectile Guidance Electronics Unit](https://dsiac.dtic.mil/articles/general-atomics-continues-testing-of-railgun-system/), [15. Military \(Mil-Spec\) Capacitors - General Atomics](https://www.ga.com/general-atomics-completes-successful-open-range-testing-of-railgun-projectile-guidance-electronics-unit), [16. Staines I](https://www.ga.com/capacitors/military-mil-spec-capacitors), [17. High Voltage Capacitors - General Atomics](https://www.nist.gov/document/2007staines-ipdf), [18. HIGH VOLTAGE CAPACITORS - General Atomics](https://www.ga.com/images/products/ep/capacitors/pdf/2408_CAPACITORS_E.pdf), [19. Capacitor Product Guide - General Atomics](https://www.ga.com/images/products/ep/capacitors/pdf/Capacitor_BC_0123E.pdf), [20. High energy density capacitors for pulsed power applications - SciSpace](https://www.ga.com/capacitors/product-guide), [21. High Energy Density Capacitors for Pulsed Power Applications - DTIC](https://scispace.com/pdf/high-energy-density-capacitors-for-pulsed-power-applications-tomdo71370.pdf), [22. \(PDF\) High energy density capacitors for pulsed power applications - ResearchGate](https://apps.dtic.mil/sti/tr/pdf/ADA520257.pdf), [23. Advanced Capacitors Double Railgun Energy Density - News - EEPower](https://www.researchgate.net/publication/237593292_High_energy_density_capacitors_for_pulsed_power_applications), [24. GA-EMS and Boeing Team to Develop 300kW-class HELWS Prototype for US Army](https://eepower.com/news/advanced-capacitors-double-railgun-energy-density/), [25. Patents Assigned to General Atomics](https://www.ga.com/ga-ems-and-boeing-team-to-develop-300kw-class-helws-prototype-for-us-army), [26. US Patent 11946726 Synchronization of high power radiofrequency](https://patents.justia.com/assignee/general-atomics), [27. RacingHistory@groups.io | Topics](https://golden.com/wiki/US_Patent_11946726_Synchronization_of_high_power_radiofrequency_sources-KNG4EB8), [28. Geoffrey W. Staines Inventions, Patents and Patent Applications](https://groups.io/g/RacingHistory/topics?page=393&after=1226326306000000000)

<https://patents.justia.com/inventor/geoffrey-w-staines> 29. Merit draft fact sheet - OSTI, <https://www.osti.gov/servlets/purl/1046706> 30. Proceedings of the High Megawatt Converter Workshop - National, <https://www.nist.gov/document/proceedings-summarypdf> 31. Session 4b - Staines II, https://www.nist.gov/system/files/documents/pml/high_megawatt/2007_Staines-II.pdf 32. Low-Insertion HVDC Circuit Breaker - ARPA-E, <https://arpa-e.energy.gov/programs-and-initiatives/search-all-projects/low-insertion-hvdc-circuit-breaker> 33. Simulation of General Atomics Legacy GF-4 Capsule Irradiation Test - American Nuclear Society, <https://www.ans.org/pubs/transactions/article-57051/> 34. General Atomics 30441R00022, Rev. B, "Reactor-Based, <https://www.nrc.gov/docs/ML1713/ML17132A243.pdf> 35. Gilberto F. Rodriguez Inventions, Patents and Patent Applications, <https://patents.justia.com/inventor/gilberto-f-rodriguez> 36. Fernando Rodriguez Inventions, Patents and Patent Applications, <https://patents.justia.com/inventor/fernando-rodriguez> 37. Поиск патентов, <https://docsearch.ru/inventor/KR%C3%9CDENER%2C+Boris.html> 38. cpc=H01M2200/00Patents | PatentGuru, <https://www.patentguru.com/search?q=cpc%3DH01M2200%2F00&page=8> 39. Gilberto Rodriguez | General Atomics, Inc. | Email, Engineering Manager, @ga.com, https://www4.lead411.com/Gilberto_Rodriguez_56962007.html 40. General Atomics New 10 MJ Railgun System Moves to Dugway for Testing, <https://www.ga.com/general-atomics-new-10-mj-railgun-system-moves-to-dugway-for-testing> 41. General Atomics Completes Guided Railgun Projectile Test - The Defense Post, <https://thedefensepost.com/2022/03/17/general-atomics-railgun-test/> 42. General Atomics to Perform Additional Railgun Pulse Power Work, <https://www.ga.com/general-atomics-to-perform-additional-railgun-pulse-power-work> 43. General Atomics, Boeing Partner on High Energy Laser Weapon System, <https://www.ga.com/general-atomics-boeing-partner-on-high-energy-laser-weapon-system> 44. General Atomics Electromagnetic Systems Highlights Its Missile Defense Portfolio at the 2025 Space and Missile Defense Symposium, <https://www.ga.com/ga-electromagnetic-systems-highlights-its-missile-defense-portfolio-at-the-2025-space-and-missile-defense-symposium> 45. General Atomics Partners with Rafael to Build Precision-Guided Missile for U.S. Defense Customers, <https://www.ga.com/ga-partners-with-rafael-to-build-precision-guided-missile-for-us-defense-customers> 46. Corey Jaskolski - XPRIZE Foundation Bio, <https://www.xprize.org/about/people/corey-jaskolski> 47. Mr. Maeda's Cozy AI Kitchen - AI & Exploration, with Corey Jaskolski - YouTube, <https://www.youtube.com/watch?v=e2W7AXHKEcs>